
 

Chương 10. Bộ ghép cực đại trên đồ thị hai phía 

10.1. Đồ thị hai phía 

Đồ thị vô hướng 𝐺 = (𝑉, 𝐸) được gọi là đồ thị hai phía nếu tập đỉnh 𝑉 của nó có thể chia làm 

hai tập con rời nhau: 𝑋 và 𝑌 sao cho mọi cạnh của đồ thị đều nối một đỉnh thuộc 𝑋 với một 

đỉnh thuộc 𝑌. Khi đó người ta còn ký hiệu 𝐺 = (𝑋 ∪ 𝑌, 𝐸). Để thuận tiên trong trình bày, ta gọi 

các đỉnh thuộc 𝑋 là các 𝑋_đỉnh và các đỉnh thuộc 𝑌 là các 𝑌_đỉnh. 

 

Hình 10-1. Đồ thị hai phía 

Một đồ thị vô hướng là đồ thị hai phía nếu và chỉ nếu từng thành phần liên thông của nó là đồ 

thị hai phía. Để kiểm tra một đồ thị vô hướng liên thông có phải đồ thị hai phía hay không, ta 

có thể sử dụng một thuật toán tìm kiếm trên đồ thị (BFS hoặc DFS) bắt đầu từ một đỉnh 𝑠 bất 

kỳ. Đặt: 

𝑋 ≔ {ta  p ca c đỉ nh đế n đượ c tư  𝑠 qua mộ  t sộ  cha n ca nh} 

𝑌 ≔ {ta  p ca c đỉ nh đế n đượ c tư  𝑠 qua mộ  t sộ  lế  ca nh} 

Nếu tồn tại cạnh của đồ thị nối hai đỉnh ∈ 𝑋 hoặc hai đỉnh ∈ 𝑌 thì đồ thị đã chộ không phải đồ 

thị hai phía, ngược lại đồ thị đã chộ là đồ thị hai phía với cách phân hoạch tập đỉnh thành hai 

tập 𝑋, 𝑌 ở trên. 

Đồ thị hai phía gặp rất nhiều mô hình trong thực tế. Chẳng hạn quan hệ hôn nhân giữa tập 

những người đàn ông và tập những người đàn bà, việc sinh viên chọn trường, thầy giáo chọn 

tiết dạy trong thời khoá biểu v.v… 

10.2. Bài toán 

Chộ đồ thị hai phía 𝐺 = (𝑋 ∪ 𝑌, 𝐸). Một bộ ghép (matching) của 𝐺 là một tập các cạnh đôi một 

không có đỉnh chung. Có thể coi một bộ ghép là một tập 𝑀 ⊆ 𝐸 saộ chộ trên đồ thị (𝑋 ∪ 𝑌, 𝑀), 

mỗi đỉnh có bậc không quá 1. 

Vấn đề đặt ra là tìm một bộ ghép lớn nhất (maximum matching) (có nhiều cạnh nhất) trên đồ 

thị hai phía chộ trước. 

𝑋 𝑌 



 

10.3. Mô hình luồng 

Ta xây dựng mạng 𝐺′ từ đồ thị 𝐺 bằng cách định hướng các cạnh của 𝐺 thành cung từ 𝑋 sang 

𝑌. Thêm vàộ đỉnh phát 𝑠 và các cung nối từ 𝑠 tới các 𝑋_đỉnh, thêm vàộ đỉnh thu 𝑡 và các cung 

nối từ các 𝑌_đỉnh tới 𝑡, sức chứa của tất cả các cung được đặt bằng 1. 

Xét một luồng trên mạng 𝐺′ có luồng trên các cung là số nguyên, khi đó có thể thấy rằng những 

cung có luồng bằng 1 từ 𝑋 sang 𝑌 sẽ tượng ứng với một bộ ghép trên 𝐺. Bài toán tìm bộ ghép 

cực đại trên 𝐺 có thể giải quyết bằng cách tìm luồng nguyên cực đại trên 𝐺′ và chọn ra các 

cung mang luồng 1 nối từ 𝑋 sang 𝑌. 

 

Hình 10-2. Mô hình luồng của bài toán tìm bộ ghép cực đại trên đồ thị hai phía. 

Chúng ta sẽ phân tích một số đặc điểm của đường tăng luồng trộng trường hợp này để tìm ra 

một cách cài đặt đợn giản hợn. 

Xét đồ thị hai phía 𝐺 = (𝑋 ∪ 𝑌, 𝐸) và một bộ ghép 𝑀 trên 𝐺. 

 Những đỉnh thuộc 𝑀 gọi là những đỉnh đã ghép (matched vertices), những đỉnh không 

thuộc 𝑀 gọi là những đỉnh chưa ghép (unmached vertices). 

 Những cạnh thuộc 𝑀 gọi là những cạnh đã ghép, những cạnh không thuộc 𝑀 được gọi là 

những cạnh chưa ghép. 

 Nếu định hướng lại những cạnh của đồ thị thành cung: Những cạnh chưa ghép định 

hướng từ 𝑋 sang 𝑌, những cạnh đã ghép định hướng ngược lại từ 𝑌 về 𝑋. Trên đồ thị định 

hướng đó, một đường đi được gọi là đường pha (alternating path) và một đường đi từ 

một 𝑋_đỉnh chưa ghép tới một 𝑌_đỉnh chưa ghép gọi là một đường mở (augmenting 

path).  

Dọc trên một đường pha, các cạnh đã ghép và chưa ghép xến kẽ nhau. Đường mở cũng là một 

đường pha, đi qua một số lẻ cạnh, trộng đó số cạnh chưa ghép nhiều hợn số cạnh đã ghép 

đúng một cạnh. 

Ví dụ với đồ thị hai phía trong Hình 10-3 và một bộ ghép {(𝑥1, 𝑦1), (𝑥2, 𝑦2)}. Đường đi 

〈𝑥3, 𝑦2, 𝑥2, 𝑦1〉 là một đường pha, đường đi 〈𝑥3, 𝑦2 , 𝑥2, 𝑦1, 𝑥1, 𝑦3〉 là một đường mở. 
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Hình 10-3. Đồ thị hai phía và các cạnh được định hướng theo một bộ ghép 

Đường mở thực chất là đường tăng luồng với giá trị thặng dư 1 trên mô hình luồng. Định lý 

9-11 (mối quan hệ giữa luồng cực đại, đường tăng luồng và lát cắt hẹp nhất) đã chỉ ra rằng 

điều kiện cần và đủ để một bộ ghép 𝑀 là bộ ghép cực đại là không tồn tại đường mở ứng với 

𝑀. 

Nếu tồn tại đường mở 𝑃 ứng với bộ ghép 𝑀, ta mở rộng bộ ghép bằng cách: dọc trên đường 

𝑃 loại bỏ những cạnh đã ghép khỏi 𝑀 và thêm những cạnh chưa ghép vàộ 𝑀. Bộ ghép mới thu 

được sẽ có lực lượng nhiều hợn bộ ghép cũ đúng một cạnh. Đây thực chất là phép tăng luồng 

dọc trên đường 𝑃 trên mô hình luồng. 

10.4. Thuật toán đường mở 

Từ mô hình luồng của bài toán, chúng ta có thể xây dựng được thuật toán tìm bộ ghép cực đại 

dựa trên cợ chế tìm đường mở và tăng cặp: Thuật toán khởi tạo một bộ ghép bất kỳ trước khi 

bước vào vòng lặp chính. Tại mỗi bước lặp, đường mở (thực chất là một đường đi từ một 

𝑋_đỉnh chưa ghép tới một 𝑌_đỉnh chưa ghép) được tìm bằng BFS hoặc DFS và bộ ghép sẽ được 

mở rộng dựa trên đường mở tìm được. 

 

M := «Một bộ ghép bất kỳ, chẳng hạn: ∅»; 
while «Tìm được đường mở P» do 

  «Dọc trên đường P: 

     - Loại bỏ những cạnh đã ghép khỏi M 

     - Thêm những cạnh chưa ghép vào M 

  » 

 

Ví dụ với đồ thị trong Hình 10-3 và bộ ghép 𝑀 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2)}, thuật toán sẽ tìm được 

đường mở:  

𝑥3 ⇢ 𝑦2 →⏟
∈𝑀

𝑥2 ⇢ 𝑦1 →⏟
∈𝑀

𝑥1 ⇢ 𝑦3 

Dọc trên đường mở này, ta loại bỏ hai cạnh (𝑦2, 𝑥2) và (𝑦1 , 𝑥1) khỏi bộ ghép và thêm vào 

bộ ghép ba cạnh (𝑥3, 𝑦2), (𝑥2, 𝑦1), (𝑥1, 𝑦3), được bộ ghép mới 3 cạnh. Đồ thị với bộ ghép 

mới không còn đỉnh chưa ghép (không còn đường mở) nên đây chính là bộ ghép cực đại 

(Hình 10-4). 
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Hình 10-4. Mở rộng bộ ghép 

10.5. Cài đặt 

Chúng ta sẽ cài đặt thuật toán tìm bộ ghép cực đại trên đồ thị hai phía 𝐺 = (𝑋 ∪ 𝑌, 𝐸), trong 

đó |𝑋| = 𝑝, |𝑌| = 𝑞 và |𝐸| = 𝑚. Các 𝑋_đỉnh được đánh số từ 1 tới 𝑝 và các 𝑌_đỉnh được đánh 

số từ 1 tới 𝑞. Khuôn dạng Input/Output như sau: 

Input 

 Dòng 1 chứa ba số nguyên dượng 𝑝, 𝑞, 𝑚 lần lượt là số 𝑋_đỉnh, số 𝑌_đỉnh và số cạnh của 

đồ thị hai phía. (𝑝, 𝑞 ≤ 104; 𝑚 ≤ 106). 

 𝑚  dòng tiếp theo, mỗi dòng chứa hai số nguyên dượng 𝑖, 𝑗  tượng ứng với một cạnh 

(𝑥𝑖 , 𝑦𝑗) của đồ thị. 

Output 

Bộ ghép cực đại trên đồ thị. 

Sample Input Sample Output  

3 3 5 

3 2 

2 2 

2 1 

1 3 

1 1 

1: x[2] - y[1] 

2: x[3] - y[2] 

3: x[1] - y[3] 

 

10.5.1. Biểu diễn đồ thị hai phía và bộ ghép 

Đồ thị hai phía 𝐺 = (𝑋 ∪ 𝑌, 𝐸) sẽ được biểu diễn bằng cách danh sách kề của các 𝑋_đỉnh. Cụ 

thể là mỗi đỉnh 𝑥 ∈ 𝑋 sẽ được chộ tượng ứng với một danh sách các 𝑌_đỉnh kề với 𝑥. 

Bộ ghép trên đồ thị hai phía được biểu diễn bởi mảng 𝑚𝑎𝑡𝑐ℎ[1 … 𝑛𝑦], trộng đó 𝑚𝑎𝑡𝑐ℎ[𝑗] là 

chỉ số của 𝑋_đỉnh ghép với đỉnh 𝑦𝑗 . Nếu 𝑦𝑗  là đỉnh chưa ghép, ta gán 𝑚𝑎𝑡𝑐ℎ[𝑗] ≔ 0.  
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10.5.2. Tìm đưởng mở 

Đường mở thực chất là một đường đi từ một 𝑋_đỉnh chưa ghép tới một 𝑌_đỉnh chưa ghép trên 

đồ thị định hướng. Ta sẽ tìm đường mở tại mỗi bước bằng thuật toán DFS: 

Bắt đầu từ một đỉnh 𝑥 ∈ 𝑋  chưa ghép, trước hết ta đánh dấu các 𝑌 _đỉnh bằng mảng 

𝑎𝑣𝑎𝑖𝑙[1 … 𝑞]  trộng đó 𝑎𝑣𝑎𝑖𝑙[𝑗] = True  nếu đỉnh 𝑦𝑗 ∈ 𝑌  chưa thăm và 𝑎𝑣𝑎𝑖𝑙[𝑗] = False  nếu 

đỉnh 𝑦𝑗 ∈ 𝑌 đã thăm (chỉ cần đánh dấu các 𝑌_đỉnh). 

Thuật tộán DFS để tìm đường mở xuất phát từ 𝑥 được thực hiện bằng một thủ tục đệ quy 

𝑉𝑖𝑠𝑖𝑡(𝑥), thủ tục này sẽ quét tất cả những đỉnh 𝑦 ∈ 𝑌 chưa thăm nối từ 𝑋 (dĩ nhiên qua một 

cạnh chưa ghép), với mỗi khi xét đến một đỉnh 𝑦 ∈ 𝑌, trước hết ta đánh dấu thăm 𝑦. Sau đó: 

 Nếu 𝑦 đã ghép, dựa vào sự kiện từ 𝑦 chỉ đi đến được 𝑚𝑎𝑡𝑐ℎ[𝑦] qua một cạnh đã ghép 

hướng từ 𝑌  về 𝑋 , lời gọi đệ quy 𝑉𝑖𝑠𝑖𝑡(𝑚𝑎𝑡𝑐ℎ[𝑦]) được thực hiện để thăm luôn đỉnh 

𝑚𝑎𝑡𝑐ℎ[𝑦] ∈ 𝑋 (thăm liền hai bước). 

 Ngược lại nếu 𝑦 chưa ghép, tức là thuật tộán DFS tìm được đường mở kết thúc ở 𝑦, ta 

thoát khỏi dây chuyền đệ quy. Quá trình thoát dây chuyền đệ quy thực chất là lần ngược 

đường mở, ta sẽ lợi dụng quá trình này để mở rộng bộ ghép dựa trên đường mở. 

Để thuật toán hoạt động hiệu quả hợn, ta sử dụng liên tiếp các pha xử lý lô: Ký hiệu 𝑋∗ là tập 

các 𝑋_đỉnh chưa ghép, mỗi pha sẽ cố gắng mở rộng bộ ghép dựa trên không chỉ một mà nhiều 

đường mở không có đỉnh chung xuất phát từ các đỉnh khác nhau thuộc 𝑋∗. Cụ thể là một pha 

sẽ khởi tạo mảng đánh dấu 𝑎𝑣𝑎𝑖𝑙[1 … 𝑞] bởi giá trị True, sau đó quét tất cả những đỉnh 𝑥 ∈

𝑋∗, thử tìm đường mở xuất phát từ 𝑥 và mở rộng bộ ghép nếu tìm ra đường mở. Trong một 

pha có thể có nhiều 𝑋_đỉnh được ghép thêm. 

 

procedure Visit(x∈X); //Thuật toán DFS 

begin 

  for ∀y: (x, y)∈E do //Quét các Y_đỉnh kề x 

    if avail[y] then //y chưa thăm, chú ý (x, y) chắc chắn là cạnh chưa ghép 

      begin 

        avail[y] := False; //Đánh dấu thăm y 

        if match[y] = 0 then Found := True //y chưa ghép, dựng cờ báo tìm thấy đường mở 

        else Visit(match[y]); //y đã ghép, gọi đệ quy tiếp tục DFS 

        if Found then // Ngay khi đường mở được tìm thấy 

          begin 

            match[y] := x; //Chỉnh lại bộ ghép theo đường mở 

            Exit; //Thoát luôn, lệnh Exit đặt ở đây sẽ thoát cả dây chuyền đệ quy 

          end; 

      end;   

end; 

 

begin //Thuật toán tìm bộ ghép cực đại trên đồ thị hai phía 

  «Khởi tạo một bộ ghép bất kỳ, chẳng hạn ∅»; 
  X* := «Tập các đỉnh chưa ghép»;  



 

  repeat //Lặp các pha xử lý theo lô 

    Old := |X*|; //Lưu số đỉnh chưa ghép khi bắt đầu pha 

    for ∀y∈Y do avail[y] := True; //Đánh dấu mọi Y_đỉnh chưa thăm 

    for ∀x∈X* do 
      begin 

        Found := False; //Cờ báo chưa tìm thấy đường mở 

        Visit(x); //Tìm đường mở bằng DFS 

        if Found then X* := X* - {x}; //x đã được ghép, loại bỏ x khỏi X* 

      end; 

  until |X*| = Old; //Lặp cho tới khi không thể ghép thêm 

end; 

 

 BMATCH.PAS  Tìm bộ ghép cực đại trên đồ thị hai phía 

{$MODE OBJFPC} 

program MaximumBipartiteMatching; 

const 

  maxN = 10000; 

  maxM = 1000000; 

type 

  TAdj = record //Cấu trúc nút trong danh sách kề 

    y: Integer; //đỉnh 

    link: Integer; //nút kế tiếp 

  end; 

var 

  p, q, m: Integer; 

  adj: array[1..maxM] of TAdj; 

  head: array[1..maxN] of Integer; 

  match: array[1..maxN] of Integer; 

  avail: array[1..maxN] of Boolean; 

  list: array[1..maxN] of Integer; 

  nList: Integer; 

 

procedure Enter; //Nhập dữ liệu 

var 

  i: Integer; 

  x, y: Integer; 

begin 

  ReadLn(p, q, m); 

  FillChar(head[1], p * SizeOf(head[1]), 0); 

  for i := 1 to m do 

    begin 

      ReadLn(x, adj[i].y);  

      adj[i].link := head[x]; head[x] := i; 

    end; 

end; 

 

procedure Init; //Khởi tạo bộ ghép rỗng 

var 

  i: Integer; 

begin 

  FillChar(match[1], q * SizeOf(match[1]), 0); 

  for i := 1 to p do list[i] := i; //Mảng list chứa các X_đỉnh chưa ghép 

  nList := p; 

end; 

 



 

procedure SuccessiveAugmentingPaths; 

var 

  Found: Boolean; 

  Old, i: Integer; 

 

  procedure Visit(x: Integer); //Thuật toán DFS từ x ∈ X 

  var 

    i: Integer; 

  begin 

    i := head[x]; //Từ đầu danh sách kề của x 

    while i <> 0 do 

      with adj[i] do 

        begin 

          if avail[y] then //y chưa thăm, hiển nhiên (x, y) là cạnh chưa ghép 

            begin 

              avail[y] := False; //Đánh dấu thăm y 

              if match[y] = 0 then Found := True //y chưa ghép thì báo hiệu tìm thấy đường mở 

              else Visit(match[y]); //Thăm luôn match[y] ∈ X (thăm liền 2 bước) 

              if Found then //Tìm thấy đường mở 

                begin 

                  match[y] := x; //Chỉnh lại bộ ghép 

                  Exit; //Thoát dây chuyền đệ quy 

                end; 

            end; 

          i := link; //Chuyển sang đỉnh kế tiếp trong danh sách các đỉnh kề x 

        end; 

  end; 

 

begin 

  repeat 

    Old := nList; //Lưu lại số X_đỉnh chưa ghép 

    FillChar(avail[1], q * SizeOf(avail[1]), True); 

    for i := nList downto 1 do 

      begin 

        Found := False; 

        Visit(list[i]); //Cố ghép list[i] 

        if Found then //Nếu ghép được 

          begin //Xóa list[i] khỏi danh sách các X_đỉnh chưa ghép 

            list[i] := list[nList]; 

            Dec(nList); 

          end; 

      end; 

  until Old = nList; //Không thể ghép thêm X_đỉnh nào nữa 

end; 

 

procedure PrintResult; //In kết quả 

var 

  j, k: Integer; 

begin 

  k := 0; 

  for j := 1 to q do 

    if match[j] <> 0 then 

      begin 

        Inc(k); 

        WriteLn(k, ': x[', match[j], '] - y[', j, ']'); 

      end; 



 

end; 

 

begin 

  Enter; 

  Init; 

  SuccessiveAugmentingPaths; 

  PrintResult; 

end. 

10.6. Đánh giá 

Nếu đồ thị có 𝑛 đỉnh (𝑛 = 𝑝 + 𝑞) và 𝑚 cạnh, do mảng đánh dấu 𝑎𝑣𝑎𝑖𝑙[1 … 𝑞] chỉ được khởi tạo 

một lần trong pha, thời gian thực hiện của một pha sẽ bằng Ο(𝑛 + 𝑚) (suy ra từ thời gian thực 

hiện giải thuật của DFS). 

Các pha sẽ được thực hiện lặp cho tới khi 𝑋∗ = ∅ hoặc khi một pha thực hiện xong mà không 

ghép thêm được đỉnh nào. Thuật toán cần không quá 𝑝 lần thực hiện pha xử lý lô, nên thời 

gian thực hiện giải thuật tìm bộ ghép cực đại trên đồ thị hai phía là Ο(𝑛2 + 𝑛𝑚) trộng trường 

hợp xấu nhất. Còn trộng trường hợp tốt nhất, ta có thể tìm được bộ ghép cực đại chỉ qua một 

lượt thực hiện pha xử lý lô, tức là bằng thời gian thực hiện giải thuật DFS. Cần lưu ý rằng đây 

chỉ là những đánh giá Ο lớn về cận trên của thời gian thực hiện. Thuật toán này chạy rất nhanh 

trên thực tế nhưng hiện tại tôi chưa biết đánh giá nàộ chặt hợn. 

Ý tưởng tìm một lúc nhiều đường mở không có đỉnh chung đã được nghiên cứu trong bài toán 

luồng cực đại bởi Dinic (Dinic, 1970). Dựa trên ý tưởng này, Hopcroft và Karp (Hopcroft & 

Karp, An n^(5/2) algorithm for maximum matchings in bipartite graphs, 1973) đã tìm ra 

thuật toán tìm bộ ghép cực đại trên đồ thị hai phía trong thời gian Ο (√|𝑉||𝐸|). Thuật toán 

Hopcroft-Karp trước hết sử dụng BFS để phân lớp các đỉnh thếộ độ dài đường đi ngắn nhất 

sau đó mới sử dụng DFS trên rừng các cây BFS để xử lý lô tượng tự như cách làm của chúng 

ta ở trên. 

 

Bài tập 10-1 

Có 𝑝 thợ và 𝑞 việc. Mỗi thợ cho biết mình có thể làm được những việc nào, và mỗi việc khi giao 

cho một thợ thực hiện sẽ được hộàn thành xộng trộng đúng 1 đợn vị thời gian. Tại một thời 

điểm, mỗi thợ chỉ thực hiện không quá một việc. 

Hãy phân công các thợ làm các công việc sao cho: 

 Mỗi việc chỉ giaộ chộ đúng một thợ thực hiện. 

 Thời gian hoàn thành tất cả các công việc là nhỏ nhất. Chú ý là các thợ có thể thực hiện 

song song các công việc được giao, việc của ai người nấy làm, không ảnh hưởng tới người 

khác. 



 

Bài tập 10-2 

Một bộ ghép 𝑀 trên đồ thị hai phía gọi là tối đại nếu việc bổ sung thêm bất cứ cạnh nào vào 

𝑀 sẽ làm cho 𝑀 không còn là bộ ghép nữa. 

a) Chỉ ra một ví dụ về bộ ghép tối đại nhưng không là bộ ghép cực đại trên đồ thị hai phía 

b) Tìm thuật toán Ο(|𝐸|) để xác định một bộ ghép tối đại trên đồ thị hai phía 

c) Chứng minh rằng nếu 𝐴 và 𝐵 là hai bộ ghép tối đại trên cùng một đồ thị hai phía thì |𝐴| ≤

2|𝐵| và |𝐵| ≤ 2|𝐴|. Từ đó chỉ ra rằng nếu thuật tộán đường mở được khởi tạo bằng một bộ 

ghép tối đại thì số lượt tìm đường mở giảm đi ít nhất một nửa so với việc khởi tạo bằng bộ 

ghép rỗng. 

Bài tập 10-3 (Phủ đỉnh – Vertex Cover) 

Chộ đồ thị hai phía 𝐺 = (𝑋 ∪ 𝑌, 𝐸). Bài tộán đặt ra là hãy chọn ra một tập 𝐶 gồm ít nhất các 

đỉnh sao cho mọi cạnh ∈ 𝐸 đều liên thuộc với ít nhất một đỉnh thuộc 𝐶. 

Bài toán tìm phủ đỉnh nhỏ nhất trên đồ thị tổng quát là NP-đầy đủ, hiện tại chưa có thuật toán 

đa thức để giải quyết. Tuy vậy trên đồ thị hai phía, phủ đỉnh nhỏ nhất có thể tìm được dựa 

trên bộ ghép cực đại. 

Dựa vào mô hình luồng của bài toán bộ ghép cực đại, giả sử các cung (𝑋, 𝑌) có sức chứa +∞, 

các cung (𝑠, 𝑋)  và (𝑌, 𝑡)  có sức chứa 1. Gọi (𝑆, 𝑇)  là lát cắt hẹp nhất của mạng. Đặt 𝐶 =

{𝑇 ∩ 𝑋} ∪ {𝑆 ∩ 𝑌}. 

a) Chứng minh rằng 𝐶 là một phủ đỉnh 

b) Chứng minh rằng 𝐶 là phủ đỉnh nhỏ nhất 

c) Giả sử ta tìm được 𝑀 là bộ ghép cực đại trên đồ thị hai phía, khi đó chắc chắn không còn 

tồn tại đường mở tượng ứng với bộ ghép 𝑀. Đặt: 

𝑌∗ = {𝑦 ∈ 𝑌: ∃𝑥 ∈ 𝑋 chưa ghế p, 𝑥 đế n đượ c 𝑦 qua mộ  t đượ ng pha} 

𝑋∗ = {𝑥 ∈ 𝑋: 𝑥 đa  ghế p va  đỉ nh ghế p vợ i 𝑥 khộ ng thuộ  c 𝑌∗} 

Chứng minh rằng 𝑋∗ ∪ 𝑌∗ là phủ đỉnh nhỏ nhất . 

Bài tập 10-4 (Tập độc lập cực đại) 

Chộ đồ thị hai phía 𝐺 = (𝑋 ∪ 𝑌, 𝐸). Bài tộán đặt ra là hãy chọn ra một tập 𝐼 gồm nhiều đỉnh 

saộ chộ hai đỉnh bất kỳ của 𝐼 không kề nhau. 

a) Chứng minh rằng nếu 𝐼 là tập độc lập cực đại thì |𝐼| = |𝑋| + |𝑌| − |𝑀| với |𝑀| là số cạnh 

của bộ ghép cực đại 

b) Xây dựng thuật toán tìm tập độc lập cực đại trên đồ thị hai phía (Gợi ý: Quy về bài toán tìm 

phủ đỉnh) 

Bài tập 10-5 

Cho 𝑀 là một bộ ghép trên đồ thị hai phía 𝐺 = (𝑋 ∪ 𝑌, 𝐸). Gọi 𝑘 là số 𝑋_đỉnh chưa ghép. Chứng 

minh rằng ba mệnh đề sau đây là tượng đượng: 



 

 𝑀 là bộ ghép cực đại. 

 𝐺 không có đường mở tượng ứng với bộ ghép 𝑀. 

 Tồn tại một tập con 𝐴 của 𝑋 sao cho |𝑁(𝐴)| = |𝐴| − 𝑘. Ở đây 𝑁(𝐴) là tập các 𝑌_đỉnh kề 

với một đỉnh nàộ đó trộng 𝐴 (Gợi ý: Chọn 𝐴 là tập các 𝑋_đỉnh đến được từ một 𝑋_đỉnh 

chưa ghép bằng một đường pha) 

Bài tập 10-6 (Định lý Hall) 

Cho 𝐺 = (𝑋 ∪ 𝑌, 𝐸) là đồ thị hai phía có |𝑋| = |𝑌|. Chứng minh rằng 𝐺 có bộ ghép đầy đủ (bộ 

ghép mà mọi đỉnh đều được ghép) nếu và chỉ nếu |𝐴| ≤ |𝑁(𝐴)| với mọi tập 𝐴 ⊆ 𝑋. 

Bài tập 10-7 (Phủ đường tối thiểu) 

Cho 𝐺 = (𝑉, 𝐸) là đồ thị có hướng không có chu trình. Một phủ đường (path cover) là một tập 

𝑃 các đường đi trên 𝐺 thỏa mãn: Với mọi đỉnh 𝑣 ∈ 𝑉, tồn tại duy nhất một đường đi trộng 𝑃 

chứa 𝑣. Đường đi có thể bắt đầu và kết thúc ở bất cứ đâu, tính cả đường đi độ dài 0 (chỉ gồm 

một đỉnh). Bài tộán đặt ra là tìm phủ đường tối thiểu (minimum path cover): Phủ đường gồm 

ít đường đi nhất. 

Gọi 𝑛 là số đỉnh của đồ thị, ta đánh số các đỉnh thuộc 𝑉 từ 1 tới 𝑛. Xây dựng đồ thị hai phía 

𝐺′ = (𝑋 ∪ 𝑌, 𝐸′) trộng đó: 

𝑋 = {𝑥1, 𝑥2, … 𝑥𝑛} 

𝑌 = {𝑦1, 𝑦2, … 𝑦𝑛} 

Tập cạnh 𝐸′ được xây dựng như sau: Với mỗi cung (𝑖, 𝑗) ∈ 𝐸, ta thêm vào một cạnh (𝑥𝑖 , 𝑦𝑗) ∈

𝐸′ (Hình 10-5) 

 

Hình 10-5. Bài toán tìm phủ đường tối thiểu trên DAG có thể quy về bài toán bộ ghép cực đại trên đồ thị hai phía. 

Gọi 𝑀 là một bộ ghép trên 𝐺′. Khởi tạo 𝑃 là tập 𝑛 đường đi, mỗi đường đi chỉ gồm một đỉnh 

trong 𝐺, khi đó 𝑃 là một phủ đường. Xét lần lượt các cạnh của bộ ghép, mỗi khi xét tới cạnh 

(𝑥𝑖 , 𝑦𝑗) ta đặt cạnh (𝑖, 𝑗) nối hai đường đi trộng 𝑃 thành một đường…Khi thuật toán kết thúc, 

𝑃 vẫn là một phủ đường. 
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a) Chứng minh tính bất biến vòng lặp: Tại mỗi bước khi xét tới cạnh (𝑥𝑖, 𝑦𝑗) ∈ 𝑀, cạnh (𝑖, 𝑗) ∈

𝐸 chắc chắn sẽ nối hai đường đi trộng 𝑃: một đường đi kết thúc ở 𝑖 và một đường đi khác bắt 

đầu ở 𝑗. Từ đó chỉ ra tính đúng đắn của thuật toán. (Gợi ý: mỗi khi xét tới cạnh (𝑥𝑖, 𝑦𝑗) ∈ 𝑀 và 

đặt cạnh (𝑖, 𝑗) nối hai đường đi của 𝑃 thành một đường thì |𝑃| giảm 1. Vậy khi thuật toán trên 

kết thúc, |𝑃| = 𝑛 − |𝑀|, tức là muốn |𝑃| → min thì |𝑀| → max). 

b) Viết chượng trình tìm phủ đường cực tiểu trên đồ thị có hướng không có chu trình. 

c) Chỉ ra ví dụ để thấy rằng thuật tộán trên không đúng trộng trường hợp 𝐺 có chu trình. 

d) Chứng minh rằng nếu tìm được thuật toán giải bài toán tìm phủ đường cực tiểu trên đồ thị 

tổng quát trong thời gian đa thức thì có thể tìm được đường đi Hamiltộn trên đồ thị đó (nếu 

có) trong thời gian đa thức. (Lý thuyết về độ phức tạp tính tộán đã chứng minh được rằng 

trên đồ thị tổng quát, bài tộán tìm đường đi Hamiltộn là NP-đầy đủ và bài toán tìm phủ đường 

cực tiểu là NP-khó. Có nghĩa là một thuật toán với độ phức tạp đa thức để giải quyết bài toán 

phủ đường cực tiểu trên đồ thị tổng quát sẽ là một phát minh lớn và đáng ngạc nhiên). 

Bài tập 10-8 

Tự tìm hiểu về thuật toán Hopcroft-Karp. Cài đặt và so sánh tốc độ thực tế với thuật toán trong bài. 

Bài tập 10-9 (Bộ ghép cực đại trên đồ thị chính quy hai phía) 

Một đồ thị vô hướng 𝐺 = (𝑉, 𝐸) gọi là đồ thị chính quy bậc 𝑘 (𝑘-regular graph) nếu bậc của 

mọi đỉnh đều bằng 𝑘. Đồ thị chính quy bậc 0 là đồ thị không có cạnh nàộ, đồ thị chính quy bậc 

1 thì các cạnh tạo thành bộ ghép đầy đủ, đồ thị chính quy bậc 2 có các thành phần liên thông 

là các chu trình đợn. 

a) Chứng minh rằng đồ thị hai phía 𝐺 = (𝑋 ∪ 𝑌, 𝐸) là đồ thị chính quy thì |𝑋| = |𝑌|. 

b) Chứng minh rằng luôn tồn tại bộ ghép đầy đủ trên đồ thị hai phía chính quy bậc 𝑘 (𝑘 ≥ 1). 

c) Tìm thuật toán Ο(|𝐸| log|𝐸|) để xác định một bộ ghép đầy đủ trên đồ thị chính quy hai phía 

bậc 𝑘 ≥ 1. 


